6 research outputs found

    Design of a Portable and Low-Cost Mass Sensitive Quartz Tuning Fork Sensor

    No full text
    The resonance frequency of quartz tuning fork (QTF) depends on the mass adsorbed to its prongs, so it is used to measure minor mass changes and detect target analyte at picogram levels. [...

    An alternative electrospinning approach with varying electric field for 2-d-aligned nanofibers

    No full text
    In the electrospinning process, unstructured nanofiber mats are produced by oriented fluid jets with an external electrostatic field. Electrospun fibers have wide applications for the fabrication of composite materials, tissue scaffold, and membranes. However, electrospun fiber production systems have many problems, e. g., the bending instability due to the complicated oscillations of polymer jet. In this research, parallel plate and hollow cylindrical conducting electrodes are implemented through the jet trajectory in order to investigate the possibility of controlled deposition of polymer fibers. Parallel electrodes with proper driving sources can generate the steering field for the nanofiber formation at the collector plate based on analog addressing electronics. It was shown that the modulated electric field applied through the parallel plate electrodes notably increased the deposition of the electrospun polymer fibers in a controlled fashion at the collector, which is coherent to the computer simulations. Furthermore, the finite-length hollow cylinder dampened the bending instabilities of the polymer jet which decreases the characteristic spot size of the deposited electrospun fiber to a smaller diameter.IEEE Nanotechnology Counci

    Novel concept on in situ syntheses and investigation of photon energy effect on AgNP size with a custom build device for enhanced antimicrobial efficiency

    No full text
    WOS:000889539700001The objectives of the present study were to examine the influence of visible light photons on photoreduction of the silver nanoparticles (AgNPs), detect optoelectronic feedback, and observe the antimicrobial activity. For this purpose, an optoelectronic device was designed and successfully tested. The finding shows that identical nanocomplexes with silver salt express various responses to the LEDs with different wavelengths by scattering different portions of light. It is the first time to discuss the effect of visible light photons on nano-sized particles in detail based on the quantitative optical/voltage analysis. The photoreduction of the AgNPs is in good agreement with photon energy and the AgNPs occur in nanocomplex in a wavelength versus time-dependent manner. The blue LED having photon energy 7.04 eV reduces the average size of AgNPs down to the range 4–6 nm in 12 min, while AgNPs obtained under influence of green (6.11 eV) and red (5.04 eV) LEDs have average sizes 6–8 nm and 12–14 nm respectively. The successful synthesis of AgNPs was additionally examined using UV–Vis, SEM, XPS, XRD, FTIR, and TEM techniques. AgNPs proved for antimicrobial activity against Escherichia coli 25922, Enterococcus faecalis 29212, Pseudomonas aeruginosa 27853, and Candida albicans 10231 at four different concentrations. The antibacterial test for all selected bacteria showed that AgNPs which have an average size of 4-6 nm synthesized by blue LED revealed the largest inhibition zone around 16–11 mm, while the antifungal test shows that the maximum inhibition zone was exposed by AgNPs which have an average size of 6–8 nm synthesized by red LED
    corecore